As you learn and practice the tricks make sure you check your results by doing multiplication the way you're used to, until the tricks start to become second nature. Checking your results is critically important: the last thing you want to do is learn the tricks incorrectly.
1. Multiplying by 9, or 99, or 999
1. Multiplying by 9, or 99, or 999
Multiplying by 9 is really multiplying by 10-1.
So, 9x9 is just 9x(10-1) which is 9x10-9 which is 90-9 or 81.
Let's try a harder example: 46x9 = 46x10-46 = 460-46 = 414.
One more example: 68x9 = 680-68 = 612.
To multiply by 99, you multiply by 100-1.
So, 46x99 = 46x(100-1) = 4600-46 = 4554.
Multiplying by 999 is similar to multiplying by 9 and by 99.2Multiplying by 5, 25, or 125
38x999 = 38x(1000-1) = 38000-38 = 37962.
Multiplying by 5 is just multiplying by 10 and then dividing by 2. Note: To multiply by 10 just add a 0 to the end of the number.3. Multiplying together two numbers that differ by a small even number
12x5 = (12x10)/2 = 120/2 = 60.
Another example: 64x5 = 640/2 = 320.
And, 4286x5 = 42860/2 = 21430.
To multiply by 25 you multiply by 100 (just add two 0's to the end of the number) then divide by 4, since 100 = 25x4. Note: to divide by 4 your can just divide by 2 twice, since 2x2 = 4.
64x25 = 6400/4 = 3200/2 = 1600.
58x25 = 5800/4 = 2900/2 = 1450.
To multiply by 125, you multipy by 1000 then divide by 8 since 8x125 = 1000. Notice that 8 = 2x2x2. So, to divide by 1000 add three 0's to the number and divide by 2 three times.
32x125 = 32000/8 = 16000/4 = 8000/2 = 4000.
48x125 = 48000/8 = 24000/4 = 12000/2 = 6000.
This trick only works if you've memorized or can quickly calculate the squares of numbers. If you're able to memorize some squares and use the tricks described later for some kinds of numbers you'll be able to quickly multiply together many pairs of numbers that differ by 2, or 4, or 6.4. Squaring 2-digit numbers that end in 5
Let's say you want to calculate 12x14.
When two numbers differ by two their product is always the square of the number in between them minus 1.
12x14 = (13x13)-1 = 168.
16x18 = (17x17)-1 = 288.
99x101 = (100x100)-1 = 10000-1 = 9999
If two numbers differ by 4 then their product is the square of the number in the middle (the average of the two numbers) minus 4.
11x15 = (13x13)-4 = 169-4 = 165.
13x17 = (15x15)-4 = 225-4 = 221.
If the two numbers differ by 6 then their product is the square of their average minus 9.
12x18 = (15x15)-9 = 216.
17x23 = (20x20)-9 = 391.
If a number ends in 5 then its square always ends in 25. To get the rest of the product take the left digit and multiply it by one more than itself.5. Multiplying together 2-digit numbers where the first digits are the same and the last digits sum to 10
35x35 ends in 25. We get the rest of the product by multiplying 3 by one more than 3. So, 3x4 = 12 and that's the rest of the product. Thus, 35x35 = 1225.
To calculate 65x65, notice that 6x7 = 42 and write down 4225 as the answer.
85x85: Calculate 8x9 = 72 and write down 7225.
Let's say you want to multiply 42 by 48. You notice that the first digit is 4 in both cases. You also notice that the other digits, 2 and 8, sum to 10. You can then use this trick: multiply the first digit by one more than itself to get the first part of the answer and multiply the last digits together to get the second (right) part of the answer.6. Squaring other 2-digit numbers
An illustration is in order:
To calculate 42x48: Multiply 4 by 4+1. So, 4x5 = 20. Write down 20.
Multiply together the last digits: 2x8 = 16. Write down 16.
The product of 42 and 48 is thus 2016.
Notice that for this particular example you could also have noticed that 42 and 48 differ by 6 and have applied technique number 4.
Another example: 64x66. 6x7 = 42. 4x6 = 24. The product is 4224.
A final example: 86x84. 8x9 = 72. 6x4 = 24. The product is 7224
Let's say you want to square 58. Square each digit and write a partial answer. 5x5 = 25. 8x8 = 64. Write down 2564 to start. Then, multiply the two digits of the number you're squaring together, 5x8=40.7. Multiplying by doubling and halving
Double this product: 40x2=80, then add a 0 to it, getting 800.
Add 800 to 2564 to get 3364.
This is pretty complicated so let's do more examples.
32x32. The first part of the answer comes from squaring 3 and 2.
3x3=9. 2x2 = 4. Write down 0904. Notice the extra zeros. It's important that every square in the partial product have two digits.
Multiply the digits, 2 and 3, together and double the whole thing. 2x3x2 = 12.
Add a zero to get 120. Add 120 to the partial product, 0904, and we get 1024.
56x56. The partial product comes from 5x5 and 6x6. Write down 2536.
5x6x2 = 60. Add a zero to get 600.
56x56 = 2536+600 = 3136.
One more example: 67x67. Write down 3649 as the partial product.
6x7x2 = 42x2 = 84. Add a zero to get 840.
67x67=3649+840 = 4489.
There are cases when you're multiplying two numbers together and one of the numbers is even. In this case you can divide that number by two and multiply the other number by 2. You can do this over and over until you get to multiplication this is easy for you to do.8. Multiplying by a power of 2
Let's say you want to multiply 14 by 16. You can do this:
14x16 = 28x8 = 56x4 = 112x2 = 224.
Another example: 12x15 = 6x30 = 6x3 with a 0 at the end so it's 180.
48x17 = 24x34 = 12x68 = 6x136 = 3x272 = 816. (Being able to calculate that 3x27 = 81 in your head is very helpful for this problem.)
To multiply a number by 2, 4, 8, 16, 32, or some other power of 2 just keep doubling the product as many times as necessary. If you want to multiply by 16 then double the number 4 times since 16 = 2x2x2x2.Practice these tricks and you'll get good at solving many different kinds of arithmetic problems in your head, or at least quickly on paper. Half the fun is identifying which trick to use. Sometimes more than one trick will apply and you'll get to choose which one is easiest for a particular problem.
15x16: 15x2 = 30. 30x2 = 60. 60x2 = 120. 120x2 = 240.
23x8: 23x2 = 46. 46x2 = 92. 92x2 = 184.
54x8: 54x2 = 108. 108x2 = 216. 216x2 = 432.